4 research outputs found

    Detection of Unknown-Unknowns in Cyber-Physical Systems using Statistical Conformance with Physics Guided Process Models

    Full text link
    Unknown unknowns are operational scenarios in a cyber-physical system that are not accounted for in the design and test phase. As such under unknown-unknown scenarios, the operational behavior of the CPS is not guaranteed to meet requirements such as safety and efficacy specified using Signal Temporal Logic (STL) on the output trajectories. We propose a novel framework for analyzing the stochastic conformance of operational output characteristics of safety-critical cyber-physical systems that can discover unknown-unknown scenarios and evaluate potential safety hazards. We propose dynamics-induced hybrid recurrent neural networks (DiH-RNN) to mine a physics-guided surrogate model (PGSM) which is used to check the model conformance using STL on the model coefficients. We demonstrate the detection of operational changes in an Artificial Pancreas(AP) due to unknown insulin cartridge errors

    High Fidelity Fast Simulation of Human in the Loop Human in the Plant (HIL-HIP) Systems

    Full text link
    Non-linearities in simulation arise from the time variance in wireless mobile networks when integrated with human in the loop, human in the plant (HIL-HIP) physical systems under dynamic contexts, leading to simulation slowdown. Time variance is handled by deriving a series of piece wise linear time invariant simulations (PLIS) in intervals, which are then concatenated in time domain. In this paper, we conduct a formal analysis of the impact of discretizing time-varying components in wireless network-controlled HIL-HIP systems on simulation accuracy and speedup, and evaluate trade-offs with reliable guarantees. We develop an accurate simulation framework for an artificial pancreas wireless network system that controls blood glucose in Type 1 Diabetes patients with time varying properties such as physiological changes associated with psychological stress and meal patterns. PLIS approach achieves accurate simulation with greater than 2.1 times speedup than a non-linear system simulation for the given dataset.Comment: To appear in ACM MSWIM 202

    EdGCon: Auto-assigner of Iconicity Ratings Grounded by Lexical Properties to Aid in Generation of Technical Gestures

    Full text link
    Gestures that share similarities in their forms and are related in their meanings, should be easier for learners to recognize and incorporate into their existing lexicon. In that regard, to be more readily accepted as standard by the Deaf and Hard of Hearing community, technical gestures in American Sign Language (ASL) will optimally share similar in forms with their lexical neighbors. We utilize a lexical database of ASL, ASL-LEX, to identify lexical relations within a set of technical gestures. We use automated identification for 3 unique sub-lexical properties in ASL- location, handshape and movement. EdGCon assigned an iconicity rating based on the lexical property similarities of the new gesture with an existing set of technical gestures and the relatedness of the meaning of the new technical word to that of the existing set of technical words. We collected 30 ad hoc crowdsourced technical gestures from different internet websites and tested them against 31 gestures from the DeafTEC technical corpus. We found that EdGCon was able to correctly auto-assign the iconicity ratings 80.76% of the time.Comment: Accepted for publication in ACM SAC 202

    Power Consumption Analysis, Measurement, Management, and Issues:A State-of-the-Art Review of Smartphone Battery and Energy Usage

    Get PDF
    The advancement and popularity of smartphones have made it an essential and all-purpose device. But lack of advancement in battery technology has held back its optimum potential. Therefore, considering its scarcity, optimal use and efficient management of energy are crucial in a smartphone. For that, a fair understanding of a smartphone's energy consumption factors is necessary for both users and device manufacturers, along with other stakeholders in the smartphone ecosystem. It is important to assess how much of the device's energy is consumed by which components and under what circumstances. This paper provides a generalized, but detailed analysis of the power consumption causes (internal and external) of a smartphone and also offers suggestive measures to minimize the consumption for each factor. The main contribution of this paper is four comprehensive literature reviews on: 1) smartphone's power consumption assessment and estimation (including power consumption analysis and modelling); 2) power consumption management for smartphones (including energy-saving methods and techniques); 3) state-of-the-art of the research and commercial developments of smartphone batteries (including alternative power sources); and 4) mitigating the hazardous issues of smartphones' batteries (with a details explanation of the issues). The research works are further subcategorized based on different research and solution approaches. A good number of recent empirical research works are considered for this comprehensive review, and each of them is succinctly analysed and discussed
    corecore